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Abstract

Developing results obtained previously (Refs. Koshlyakov VN. Structural transformations of the equations of perturbed motion of
a certain class of dynamical systems. Ukr Mat Zh 1997; 49 (4): 535–539; Koshlyakov VN. Structural transformations of dynamical
systems with gyroscopic forces. Prikl Mat Mekh 1997; 61 (5): 774–780; Koshlyakov VN, Makarov VL. The theory of gyroscopic
systems with non-conservative forces. Prikl Mat Mekh 2001; 65 (4): 698–704; Koshlyakov VN, Makarov VL. The stability of
non-conservative systems with degenerate matrices of dissipative forces. Prikl Mat Mekh 2004; 68 (6): 906–913), the general
problem of eliminating non-conservative positional structures from the second-order differential equation with constant matrix
coefficients, obtained when modelling many mechanical systems, is considered. It is assumed that the matrices of the dissipative
and non-conservative positional structures may, in particular, be degenerate. Under fairly general assumptions, theorems containing
the necessary and sufficient conditions for a Lyapunov transformation to exist are proved. This converts the initial matrix equation
to an equivalent autonomous form (in Lyapunov’s sense) with a symmetrical matrix of the positional forces. An illustrative example
is considered.
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Initial equations. Consider the equation

(1.1)

with positive scalar parameter H (Ref. [5]5), where x = col(x1(t), . . ., xm(t)) is the required vector and the coefficients
J, D, G, � and P are constant m × m matrices with real elements, which satisfy the conditions

(1.2)

(the superscript T denotes transposition).
No additional limitations, apart from those in conditions (1.2), are imposed on the matrices in Eq. (1.1).
Eq. (1.1) describes the motion of many mechanical systems acted upon by dissipative, gyroscopic and non-

conservative positional forces. In systems containing gyroscopes, the parameter H may be understood to be the value
of the inherent angular momentum of each of the gyroscopes in the system considered, while J is the matrix of
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the overall moments of inertia of the system about corresponding axes. The elements of the skew-symmetric matrix
G = ||gkj||k,j=1,...,m here are determined uniquely directly from the initial equations of the device considered.

Note that in the equations of the perturbed motion of gyroscopic systems, set up on mobile bases, in particular, on
a base which rotates with an angular velocity � about a vertical position, the elements of the matrix � may contain
elements with the factor H, due to the gyroscopic moment, which arises when the base rotates with the angular velocity
indicated. Under certain conditions this moment may have a considerable influence on the stability of the system.
To estimate this effect, it is convenient to represent the matrix � first of all in the form of the sum of two matrices,
assuming

(1.3)

where the matrices �(0) and �(H) are independent of H.5

In Eq. (1.1) we make the transformation

(1.4)

with Lyapunov’s matrix L(t), where E is the identity matrix. Transformation (1.4) does not change the stability properties
of the trivial solution of Eq. (1.1), corresponding to unperturbed motion. The transformed equation for the vector �(t)
will have the form

(1.5)

where

The subscript unity on the matrices denotes their multiplication from the left and from the right by the matrix J−½,
for example �1 = J−1/2�J−1/2.

Consider the following problem: it is required to obtain the necessary and sufficient conditions for which, when
they are satisfied, transformation (1.4) exists with a Lyapunov matrix L(t), which is independent of H, which converts
Eq. (1.1) to the equivalent form (in Lyapunov’s sense)

(1.6)

where V1 and W1 are certain constant matrices, which depend on the parameter H.
Eqs. (1.5) and (1.6) will be said to be equivalent if each solution of Eq. (1.5) is a solution of Eq. (1.6), and

conversely. Note that, in the formulation of the problem above it is not required that the Lyapunov matrix should be
initially determined from the equation

(1.7)

as was assumed earlier in Refs. 1–4,6,7.
We will henceforth use the following notation. For any two m × m matrices A and B we will denote their commutator

by [A, B] = AB − BA. If the matrix A is degenerate, we will denote the pseudoinverse Moore-Penrose matrix to the
matrix A by A+ (Refs. 8–10).

2. Theorem 1 on the equivalence of Eqs. (1.1) and (1.6) (in Lyapunov’s sense)

We will first prove the following lemma.

Lemma. Suppose D1 = DT
1 ≥ 0, C = −CT , where C is a certain constant skew-symmetric matrix. Then, in order

that the matrix

(2.1)

should be a Lyapunov matrix, it is necessary and sufficient that
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(2.2)

Proof. Suppose the commutativity condition (2.2) is satisfied. Expression (2.1) then takes the form

(2.3)

Since we have assumed that the matrix C is skew-symmetric, L(2t) will be a Lyapunov matrix.8 �

We will prove the inverse assertion. Suppose matrix (2.1) is a Lyapunov matrix. Then

(2.4)

where ||L(2t)|| is the norm of the matrix L(2t) and K is a positive constant. It is necessary to show that the commutativity
condition (2.2) will then be satisfied.

Since the matrix D1 is symmetrical, the following representation8 holds for it

(2.5)

where S is the fundamental matrix and � is the diagonal matrix of the eigenvalues �k of the matrix D1. We then have
the relations

(2.6)

We will denote by �k (k = 1, . . ., m) the eigenvalues of the matrix

We will choose the numbering of the eigenvalues �k and �k (k = 1, . . ., m) such that

We will prove the inverse assertion indirectly. Suppose inequality (2.4) holds, but the commutativity condition (2.2)
is not satisfied. Then not all the �k will be identical. We will assume, without loss of generality, that

We reduce the matrix N to Jordan form8

where T = (ti,j)
i,j=1,...,m

and M is an upper triangular matrix consisting of Jordan boxes, where

It follows from relations (2.6) that

Since STCS is a skew-symmetric matrix, �1 + �2 + . . . + �m = �. Further, we have
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where

where �ik is the Kronecker delta.
The following relation holds

(2.7)

In fact, if Re�1 > l1, the vector STL(2t)STe1 will have a bounded norm for all t ≥ 0, when the first column of the
non-singular matrix T is a null matrix, which is impossible. If Re�1 ≤ l2, we have

(2.8)

which is also impossible. It follows from relation (2.7) that the vector STL(2t)STe1 will have a boundednorm for all
t ≥ 0, when

The latter denotes that the matrix N will have as its own eigenvector the vector T1 = col(t11, t21, 0, . . ., 0),
corresponding to the eigenvalue �1. The matrix

will then have its own eigenvector col(t11, t21), which corresponds to the eigenvalue �1. Since n12 = −n21 and
n11 = n22 = l1, the matrix N11 will be a matrix of simple structure with eigenvalues �1 and �2 and corresponding
eigenvectors tk = col(t1k, t2k) (k = 1, 2), which are linearly independent. Hence it follows that the matrix N will also
have as its own eigenvector the vector T2 = col(t12, t22, 0, . . ., 0), which corresponds to the eigenvalue �2, and the
following relations must be satisfied

(2.9)

Since the vectors ts = col(t1s, t2s) (s = 1, 2) are linearly independent, from relations (2.9) we obtain

which, taking into account the fact that the matrix STCS is skew-symmetric, leads to the commutativity of the matrices
D1 and C, but this contradicts the assumption.

Theorem 1. Suppose the matrix coefficients in Eq. (1.1) satisfy conditions (1.2) and (1.3). In order that the Lyapunov
transformation (1.4), which reduces Eq. (1.1) to the form (1.6) with a matrix W1 that is symmetrical for all H > 0,
should exist, independent of H, it is necessary and sufficient that the system of equations

(2.10)

should have as its own solution a matrix C which generates the Lyapunov matrix

(2.11)

Here

(2.12)

Proof. Necessity. Suppose a Lyapunov transformation (1.4) exists, independent of H, by means of which Eq. (1.1) is
converted to the form (1.6). Then we will have the following identities
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(2.13)

Referring to the first identity of (2.13), we will consider it as an equation in L(t). Its solution, which satisfies the
condition L(0) = E, has the form

(2.14)

Substituting solution (2.14) into the second identity of (2.13) and assuming further that t = 0, we obtain the expression

(2.15)

taking which into account together with solution (2.14), from the second identity of (2.13) we obtain the commutativity
condition

(2.16)

Differentiating the equality obtained with respect to t and assuming t = 0, taking the notation of (2.14) into account,
we obtain the equation

from which we find the matrix V1 in the form of the first relation of (2.12), where C is, for the present, an arbitrary
matrix, which satisfies the commutativity condition

(2.17)

Taking the first relation of (2.12) into account and bearing in mind that the matrix L(t) is independent of H, we
arrive from the first identity of (2.13) to the identity

(2.18)

We differentiate identity (2.18) with respect to t and put t = 0. Then, taking the first identity of (2.13) and the first
relation of (2.12) into account, we obtain that the matrix C satisfies the first equation of (2.10).

Taking the first equation of (2.10) and the first relation of (2.12) into account, we can represent expression (2.15) in
the form

(2.19)

We will consider the second identity of (2.13) with the matrix W1, defined by formula (2.19), as an equation in L(t).
In order that it should have a solution independent of H, it is necessary that the matrix L(t) should satisfy the equation

(2.20)

We will now obtain the conditions for which the matrix (2.19) is symmetrical for all H > 0. This will occur when a
relation, identical with the third equation of (2.10), is satisfied as well as the relation

(2.21)

which follows from representation (2.19) when W1 = WT
1 for all H > 0.

It follows from the first and third equations of system (2.10) and the condition detC �= 0, that the matrix C is skew-
symmetric. Further, we obtain from the first identity of (2.13), identity (2.18) and the first relation of (2.12) that the
Lyapunov matrix L(t), independent of H, should have the form

(2.22)

We now use the lemma proved above. It follows from this lemma that the matrix (2.11) will be a Lyapunov matrix
when the second equation (2.10), applicable to the matrix C, is satisfied. The matrix L(t) then takes the form (2.11).
Taking into account the fact that the matrix C is skew-symmetric and the commutativity of the matrices D1 and C, we
obtain that relation (2.21) takes the form of the fourth equation of system (2.10).
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The fifth equation of (2.10) is obtained from representation (2.11) and relations (2.20).
It remains to satisfy the last equation of system (2.10). We differentiate the second identity of (2.13) with respect

to t and put t = 0. Then, using representation (2.11), and also the first, second and fourth equations of (2.10), it can be
shown that the matrix C satisfies the sixth equation of (2.10).

Thus, the system of Eq. (2.10) has the matrix C, which generates the Lyapunov matrix (2.11), as its solution. This
proves the necessity.

Sufficiency. We will assume that the system of Eq. (2.10) is compatible and we will suppose that the matrix C is
the solution of this system (or one of the solutions, if it is not unique). Corresponding to this solution, we construct
the matrix (2.11). We conclude from the first and third equations of system (2.10) and, taking the condition detG �= 0
into account, that the matrix C is skew-symmetric. Consequently, the matrix (2.11) is a Lyapunov matrix independent
of H. We will show that the Lyapunov transformation (1.4), (2.11) then reduces Eq. (1.1) to the form (1.6).

Eq. (1.1), after transformations (1.4) and (2.11), takes the form of the equivalent Eq. (1.5). Consider the coefficient
of �̇(t). To convert it we will use representation (2.11) and the first two equations of system (2.10). We obtain

We similarly consider the coefficient of �(t). To convert it we will use representation (2.2), and also the first, second,
fifth and sixth equations of (2.10). As a result we obtain

Hence, Eq. (1.5) takes the form

Using the third and fourth equations of (2.10) it can be shown that the matrix W1 is symmetrical for all H > 0, i.e.
W1 = WT

1 . This proves the sufficiency.
As a consequence of the theorem which has been proved we have from the fourth equation of system (2.10) (Ref. 9)

(2.23)

where Y is an arbitrary m × m matrix, and D+
1 is the pseudoinverse Moore-Penrose matrix to the matrix D1. The

condition for the fourth equation of system (2.10) to be solvable must then be satisfied, namely,

(2.24)

3. The case D > 0

The results obtained in Section 2 can be extended to the case when the matrix D of the dissipative forces is
positive-definite and, consequently, non-degenerate.

Theorem 2. Suppose conditions (1.2) are satisfied and

(3.1)

In order that Lyapunov transformation (1.4), independent of H, should exist, by means of which Eq. (1.1) is converted
to the form (1.6) with matrix W1 = WT

1 for all H > 0, it is necessary and sufficient for the following relations to be
satisfied

(3.2)

The corresponding Lyapunov matrix has the form

(3.3)
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Here

(3.4)

Proof. We will use system (2.10) taking condition (3.1) into account. From the fourth equation of this system we
obtain

(3.5)

Note that expression (3.5) follows directly from formula (2.23), since, in the case considered, the pseudoinverse
matrix D+ is identical with the matrix D−1.

Further, we have from the first and third equations of system (2.10)

(3.6)

which leads to the second relation of (3.2).
Substituting expression (3.5) into the first equation of system (2.10) and taking the second relation of (3.2) into

account, we have

whence the first relation of (3.2) follows.
Using the result of substituting expression (3.5) into the fifth equation of (2.10) and taking the second relation of

(3.2) into account, we have

Hence we obtain the fourth relation of (3.2). It can similarly be shown that the third relation (3.2) follows from the
sixth equation of system (2.10).

Hence, the solvability of system of (2.10) with conditions (1.2) and (3.1) is equivalent to the satisfaction of relations
(3.2) and (3.5). This completes the proof of Theorem 2. �

In conclusion, we note that conditions (3.2) differ from the corresponding conditions obtained previously in Ref. 3,
by virtue of the difference of the initial formulations of the problems.

4. A four-gyroscope gyrohorizontal

As an example of the above theory we will consider below a model of a corrected four-gyroscope gyrohorizontal
with a different control algorithm compared with that considered earlier in Ref. 4.

The system consists of a platform, set in gimbals, which is stabilized horizontally by four similar gyroscopes with
vertical axes of their housings. The gyroscopes are connected in pairs by antiparallelograms, which ensure that each
pair of gyroscopes rotates in the plane of the platform by the same angles in opposite directions. Each pair of gyroscopes
is connected by a spring to the inner frame of the suspension. It is assumed that the centre of mass of the system is
situated below its geometrical centre. The system is set up on a base which rotates with a constant angular velocity �
about a fixed upward vertical with origin at the geometrical centre of the platform. We will neglect the effect of the
rotation of the Earth, which unimportant in this case.

The system is provided with two radial correction circuits, by means of which, unlike the system considered in Ref.
4, two moments are superimposed: relative to the internal frame of the suspension, proportional to the value of the
angle � of rotation of one of the pairs of gyroscopes with respect to the vertical axes of their housings, and a moment
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about the axis of the housing of the gyroscope of the given pair, proportional to the value of the angle 	 of rotation of
the internal frame (see Eq. (4.1) below).

The equations of perturbed motion of the system, as it applies to the conditions specified above, have the form

(4.1)

Here we have used the same notation as in Eq. (3.1) of Ref. 4.
Assuming

we arrive at a special case of Eq. (1.1), in which we must assume

(4.2)

Hence,

As stated above in expressions (4.2) we mean by H the natural angular momentum of each of the gyroscopes of the
system.

Since the matrix G is non-degenerate, we can use Theorem 1 and Eq. (2.10) corresponding to it. From the second
and third equations of system (2.10) we obtain C = −CT, and hence

Further, using the fourth equation of system (2.10), we obtain

which leads to the conditions

(4.3)

When conditions (4.3) are satisfied, the first three equations of system (2.10) are also satisfied. If, in accordance with
the Sommerfeld-Greenhill concept, we take bs = �Js (s = 2, 3), � > 0 in the second condition of (4.3), it will be satisfied
automatically.



18 V.N. Koshlyakov, V.L. Makarov / Journal of Applied Mathematics and Mechanics 71 (2007) 10–19

The fifth equation of (2.10) reduces, in the final analysis, to the conditions

(4.4)

Using the sixth equation of (2.10), we obtain

(4.5)

Condition (2.24) for the fourth equation of (2.10) to be solvable in this problem is also satisfied. In fact, taking
expressions (4.2) into account, we have

whence it follows that all the elements of the matrix on the left-hand side of this equality are zeros.
Here we must assume that

Hence, in the problem considered here, when the matrix D is degenerate, it turns out that

(4.6)

and hence conditions (3.2), obtained as they apply to the non-degenerate matrix D, in this case turn out to be inapplicable.
Hence it follows that under these conditions one cannot formally replace D−1 by D+, as was done by Müller.7

Hence, the conditions

(4.7)

in which we must assume that c > 0, Pl > 0, s1 > 0, are necessary and sufficient for the initial system (4.1) with degenerate
matrices D and P to be reducible to the form (1.6), not containing non-conservative positional structures. In this case,
the matrix C and the Lyapunov matrix L(t) generated by it have the form

(4.8)

The sufficient criterion for the system considered to be stable can be obtained from the conditions for the symmetric
matrix W1, defined by the second of representations (2.12), to be positive-definite. Taking conditions (4.7) into account
we will assume that J = (J3, J2, J2, J3).

Using the fourth equation of (2.10), we obtain the following expression for the matrix W1

whence, taking conditions (4.7) into account, it follows that

(4.9)

where

(4.10)

Sylvester’s criterion, applied to matrix (4.9), reduces to the inequalities

(4.11)

since in this case detW1 > 0.
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The first condition of (4.11) can be represented in the form

(4.12)

Satisfaction of condition (4.12) ensures that nutational oscillations are suppressed.
The second condition of (4.11) reduces to the form

(4.13)

Like the system considered previously in Ref. 4, by virtue of the degeneracy of the matrix D, Rayleigh’s function

2� = b2�̇2 + 	̇
2

will not be positive-definite for all velocities 
̇, �̇, �̇, 	̇. However, the dissipation in Eq. (4.1) may
turn out to be complete. We will denote the determinant of the matrix of the positional forces � + P by �. We will then
have4

(4.14)

Since the determinant (4.14) in this problem is non-zero, the dissipative forces acting on system (4.1) vanish only
in unperturbed motion, corresponding to the equilibrium position

This indicates that the dissipation is complete.11 Then, when the matrix W1 is positive-definite, to which satisfaction of
conditions (4.12) and (4.13) corresponds in this case, the presence of forces with complete dissipation in the gyroscopic
forces ensures the property of asymptotic stability in this system.12

In the precessional formulation we must retain in condition (4.13) only terms containing the parameter H with a
factor. The corresponding condition has the form4,13

In conclusion, we note that conditions (4.7) are more general compared with the conditions obtained in Ref. 4, as
they apply to a system close in structure to the one considered. This is due to the fact that, in this paper, we have not
used the second condition of (1.5) in Ref. 4, which impose additional limitations on the system parameters.
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